
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2001; 35: 247–280

Adaptive Q-tree Godunov-type scheme for shallow water
equations

Ben Rogersa, Masayuki Fujiharab and Alistair G. L. Borthwicka,*

a Department of Engineering Science, Uni6ersity of Oxford, Parks Road, Oxford OX1 3PJ, U.K.
b College of Agriculture, Ehime Uni6ersity, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan

SUMMARY

This paper presents details of a second-order accurate, Godunov-type numerical model of the two-
dimensional shallow water equations (SWEs) written in matrix form and discretized using finite volumes.
Roe’s flux function is used for the convection terms and a non-linear limiter is applied to prevent
unwanted spurious oscillations. A new mathematical formulation is presented, which inherently balances
flux gradient and source terms. It is, therefore, suitable for cases where the bathymetry is non-uniform,
unlike other formulations given in the literature based on Roe’s approximate Riemann solver. The model
is based on hierarchical quadtree (Q-tree) grids, which adapt to inherent flow parameters, such as
magnitude of the free surface gradient and depth-averaged vorticity. Validation tests include wind-
induced circulation in a dish-shaped basin, two-dimensional frictionless rectangular and circular dam-
breaks, an oblique hydraulic jump, and jet-forced flow in a circular reservoir. Copyright © 2001 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical models based on the non-linear shallow water equations (SWEs) are used to model
predominantly horizontal, free surface flows in shallow lakes, wide rivers, estuaries and the
coastal zone (in which case the SWEs are coupled through radiation stresses to a wave climate
model). Natural flow domains have complicated boundary configurations, which may them-
selves strongly influence the interior flow patterns. The interior domain may contain regions of
high-flow gradients, such as the shear layers in the vicinity of eddies, as well as regions of low
hydrodynamic activity (stagnation zones). It is important for numerical shallow-flow models to
be able to simulate accurately the evolution of relatively small-scale features, such as fronts,
within large complex domains. To this end, research effort has been directed towards ad-
vanced adaptive grid generation techniques, such as boundary fitted curvilinear systems [1,2],
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unstructured advancing front and Voronoi methods [3], and hierarchical grid techniques [4,5].
Such grid generators ideally should be automatic (i.e. require only boundary and flow feature
information for generation), robust (i.e. work in all situations), efficient (i.e. not too expensive
in computer storage and CPU time) and fit the flow boundaries correctly. Hierarchical grid
generation appears an attractive option in that it meets most of the foregoing requirements.
Two-dimensional quadtree (Q-tree) [6] or tritree [7] grids may be produced extremely quickly
by simple spatial decomposition into rectangles or triangles about seeding point information.

Accurate solutions of the SWEs can be achieved using Godunov-type schemes, which are
appropriate for systems of hyperbolic equations and are applicable to discontinuous flow
situations, such as those occurring at hydraulic jumps [8–10]. Special care needs to be taken
in properly discretizing the convection terms at cell interfaces, while damping non-physical
oscillations by means of a limiter [10,11]. Several authors have experienced problems in solving
the hyperbolic SWEs using Roe’s approximate Riemann solver because of the difficulty in
balancing the flux gradient and source terms. For example, Ambrosi [12] observed that a
problem occurred when simulating still water above an uneven bed. Nugic [13] also noted that
very poor results were obtained for cases of shallow flow with variable depth and referred to
the problem as numerical incompatibility. Nugic proposed a revised mathematical formulation
of the SWEs, by reallocating all bed slope related flux gradients to the source term. Recently,
Vázquez-Cendón [14] used numerical upwinding of the source terms to rectify the equilibrium
between flux gradient and source terms. Hubbard and Garcia-Navarro [15] have since
extended this numerical treatment to higher-order total variation diminishing (TVD) schemes.

A new conservative hyperbolic version of the non-linear SWEs is derived in the present
paper, properly balancing source and flux gradient terms. Hence, the need for a posteriori
numerical treatment is removed. This paper first gives a brief description of Q-tree grid
generation. The equations are written in Cartesian matrix form suitable for application on
rectangular Q-tree grids. The equations are discretized using finite volumes collocated with the
grid cells, and integrated in time using a second-order Adams–Bashforth scheme. Results are
presented for a series of validation tests designed to verify the accuracy and efficiency of the
adaptive Q-tree model. The tests include simulations of wind-induced flow in a basin with
non-uniform bathymetry, moving fronts (i.e. the dam-break problems), flow recirculation
(jet-forced flow in a reservoir) and a shock-type flow discontinuity (the oblique hydraulic
jump).

2. Q-TREE GRID GENERATION

Q-tree grid generation is achieved by normalizing the problem domain so that it fits into a unit
square, sub-dividing the unit square (root panel) into four quadrants, searching for seeding
points and sub-dividing panels in which a prescribed number are found, and finally imposing
grid regularization. In this case, grid regularization is achieved by ensuring a maximum 2:1
ratio between the linear dimensions of adjacent cells, and by limiting the number of cell
configurations in the grid so that it has greater uniformity. The 2:1 condition provides a
trade-off between grid flexibility and accuracy. For example, no more than one hanging node
can occur on any cell edge at the interface between cells of different size. This reduces the
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possible interpolation error through discretization, while allowing the grid density to vary
significantly over relatively short distances. The regularized regions spread out from areas of
high cell density, thus minimizing the number of neighbour cells checked for compliance of the
2:1 condition.

Q-tree grid information is held in integer arrays with pointers to parent and child cells.
Similar to the method proposed by Van Dommelen and Rundensteiner [16], each cell is given
a unique identification number consisting of a concatenated series of 1s and 2s and trailing
zeros according to its position in the unit square. The identification number is built-up from
the root (i.e. unit square) level during the sub-division process; at any arbitrary level, the
numbers 11, 12, 22, 21 refer to northwest, northeast, southeast and southwest respectively.
Cells that are at a lower level of resolution than the prescribed finest level are given trailing
zeros at the end of their identification numbers so that they have the same total number of
integers as that of a cell at the finest level. Consider Figure 1; by concatenation of the local
reference numbers and addition of trailing zeros, the identification number for cell A at level
4 out of a finest level 16 is NA=122112220000000000000000000000. Cell neighbour finding
and grid regularization are jointly undertaken, making use of the Q-tree structure. As indicated
by Greaves and Borthwick [17], it is straightforward to determine the identification numbers
of parent, children and same-size adjacent cells through simple manipulations of the identifica-
tion number. Neighbours are identified by checking for the presence of same-size adjacent
(both sideways and corner) cells, as if the grid were uniform. If the cell lies within a
non-uniform grid cell configuration, neighbour finding involves searching the tree for the
nearest common ancestor shared between the cell of interest and adjacent/corner neighbours.
Neighbours are then found by searching the tree from the nearest common ancestor to leaves
at the highest division level.

Figure 1. Typical Q-tree grid arrangement.
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Grid refinement and coarsening are achieved by the selective addition and removal of Q-tree
cells according to user specified criteria, including boundary seeding points formed from the
discretized geometry, the free surface gradient and the magnitude of depth-averaged vorticity.

3. GOVERNING EQUATIONS

The SWEs describe flow in shallow water bodies where the vertical acceleration within the
fluid is negligible and the pressure assumed hydrostatic. In differential form, the SWEs are
written as
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where z is the free surface elevation above the still water level hs, h (=z+hs) is the total water
depth, u and 6 are depth-averaged velocities in the x- and y-directions respectively, ux, uy and
6x, 6y are derivatives of the depth-averaged velocity components in the x- and y-directions
respectively, g is acceleration due to gravity, r is water density, twx and twy are surface stresses,
tbx and tby are bed friction stresses, f is the Coriolis parameter and n is the kinematic eddy
viscosity coefficient. It is assumed also in the above equations that the vertical viscous forces
are negligible, and that the momentum correction factor due to the non-uniform vertical
distribution of horizontal velocities can be taken as unity. In many nearly horizontal flows,
these approximations are reasonable (see e.g. Reference [18]).

The gh (z/(x term is usually split to give the hyperbolic formulation used by many
researchers (e.g. References [3,19,20])
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where Sox is the bed slope in the x-direction. However, when applied to non-uniformly varying
bathymetries, this approach leads to problems conserving continuity and momentum for
individual cells when using Roe’s approximate Riemann solver. The split of the free surface
gradient term into source and flux gradient components causes an imbalance, despite the fact
that the finite volume scheme is inherently conservative. This problem is independent of
geometric configuration. A consequence of using the conventional formulation is that still
water cannot be computed; hence, the scheme produces physically meaningless results when
applied to cases with uneven beds. The difficulty is overcome herein by splitting and
redistributing the gh (z/(x term in a novel way, which still retains the hyperbolic nature of the
SWEs
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Applying a similar operation to the gh (z/(y term, the SWEs are rewritten as
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where Soy is the bed slope in the y-direction. Other mathematical formulations are possible,
but when constructing the system’s flux Jacobian and discretizing using finite volumes, the
equations can produce non-hyperbolic and unconditionally unstable results. This formulation
allows Roe’s approximate Riemann solver to be used to evaluate the inviscid flux between
adjacent cells for all bathymetries.

4. NUMERICAL SOLVER

The two-dimensional SWEs are discretized spatially using finite volumes on the Q-tree grid,
with Roe’s flux function used to represent the non-linear convection terms. Time integration
is by means of the second-order Adams–Bashforth technique. Unwanted oscillations are
avoided using a non-linear limiter.

The SWEs can be written in integral form as
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where V is the problem domain, q is the vector of conserved variables, f and g are flux vectors,
and h is the vector of forcing functions. The vectors q, f, g and h are given by
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By applying Green’s theorem to the second term in Equation (5)
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where S is the boundary of V, and f. is the vector of flux functions through S given by

f. = fnx+gny (7)

in which nx and ny are the Cartesian components of n, the unit normal vector to S. Equation
(7) may also be written in terms of inviscid and viscous fluxes as
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The equations are discretized on a collocated grid with uh, 6h and z stored at the centre of
each cell. The location of variables in an arbitrary control volume is shown in Figure 2. For
each cell, Equation (6) can be more conveniently rewritten as

(Vq
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)
i

= −
7
(Ci

f. i ds+Vihi (9)

where qi and hi are the cell centre values, and Vi denotes the area of cell i. For the Q-tree cells,
(Ci is the path of integration, which is along all four cell edges where the flux out of each face
is assumed uniform. The surface integral in Equation (9) can be evaluated in discrete form by
using the equation
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Figure 2. Control volume showing location of variables.7
(Ci

f. i ds= (f. E− f. W+ f. N− f. S)Ds (10)

where f. E, f. W, f. N and f. S are the vector fluxes through the east, west, south and north faces of
each cell respectively, and Ds is the length of the cell side.

4.1. In6iscid fluxes

The inviscid fluxes can be evaluated by adopting Roe’s approximate Riemann solver at each
cell edge as follows:
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where qi, j
+ and qi, j

− are reconstructed right and left Riemann states respectively at the cell
interface, located between adjacent cells i and j, A is the flux Jacobian evaluated using R and
L, the right and left eigenvector matrices of A respectively, and �L� is a diagonal matrix of the
absolute values of the eigenvalues of A. The inviscid flux Jacobian is given by
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which has real and distinct eigenvalues (confirming hyperbolicity) given by
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and the left eigenvector matrix is given by
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Despite the different formulation given in Equation (4), the flux Jacobian A, its eigenvectors
and associated right and left eigenvector matrices, are identical to those obtained using the
conventional approach (see, e.g. Reference [3]). The variables u, 6, c in Equations (12)–(15) are
given by Roe’s average state, which is defined as
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where the superscripts + and − denote the right and left Riemann states on either side of a
cell interface respectively.

As h increases, so does c=
gh, and hence l1=a (where a=unx+6ny), l2�−c and
l3�c. By analogy with a system of ordinary differential equations (ODEs), the stiffness ratio
(Toro [10], p. 504) tends towards c/a. In other words, the ratio between the shallow water wave
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celerity and the depth-averaged flow speed is an approximate guide to the system’s stiffness.
Toro notes that serious numerical difficulties may arise in explicit methods as the stiffness
increases above 20. For cases starting from rest, this is an obviously important consider-
ation. However, problems were not encountered using the present scheme within the range
of test cases. It should be noted that the shallow water approximation h/L�1, where L is
the free surface wavelength, becomes violated at high values of h (and hence c).

4.2. Limiter

In order to evaluate Equations (12)–(15), the Riemann states either side of the interface
must be determined. Spatial information on the velocities and depth within the cell can be
obtained from an interpolation across an arbitrary cell A given by

q(x, y)=qA+ (9qA) ·r (17)

where q is a component of the vector of conserved variables q, and qA is its value at the
centre of cell A, 9 is the gradient vector and r(x, y) is the vector from the cell centre to
any arbitrary point within the cell. Equation (17) is a piecewise linear interpolation that
gives a second-order spatial approximation.

However, numerical oscillations can occur when evaluating 9qA. It is highly desirable to
avoid creating numerical oscillations when trying to simulate flow discontinuities. The main
options available for controlling or limiting oscillations around discontinuities are to use
artificial viscosity or non-linear limiters. Slope limiters suppress the generation of local
extrema in a non-linear manner when the variables u, 6, h are reconstructed for use in
Equations (12)–(15). Herein, a slope limiter is implemented such that for consecutive cells
i−1, i, i+1 on a locally uniform grid (using interpolation if necessary), Equation (17) is
replaced by

q(x, y)=qi+
F
2

(qi−qi−1) (18)

where F is the slope limiter. In practice, the limiter restricts the gradient such that the
cell-face data, reconstructed from the stored cell-centre data, falls within the range of the
cell-centre data in the cells either side of the interface. As given by Hirsch [11], F is defined
as

F(r)=max[0, min(br, 1), min(r, b)] (19)

where the limiter parameter, b, is restricted to 15b52, and the gradient ratio is given by

r=
qi+1−qi

qi−qi−1

(20)
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Equations (18)–(20) are defined such that if r\1, a slope of (qi−qi−1)/�r� is used to predict
the Riemann state, or if rB1 the selected slope is (qi+1−qi)/�r�.

In particular, b=1 gives the minmod limiter, and b=2 gives Roe’s Superbee limiter. The
choice of minmod slope limiter used herein is of relatively low strength and so is slightly
dissipative, but this effect should not be overly significant for shallow water flows. It should
be noted that Anastasiou and Chan [3] have compared the effect of using different slope
limiters, and found that as the limiter increases in strength it is less diffusive but permits
greater numerical oscillations.

4.3. Boundary conditions

The discretization of the SWEs applies to cells in the interior of the computational mesh. For
cells on the boundary of the domain, special discretizations of the SWEs have to be applied to
stabilize the numerical scheme and maintain continuity.

Herein, slip or no-slip conditions may be applied at closed boundaries. In both cases the
velocity normal to the wall is set to zero to represent no flux through the boundary. To
describe the no-slip boundary, the tangential velocity component at the cell edge is also set
equal to zero. Riemann invariants, specified according to the local Froude number, have been
used to implement open boundary conditions as follows:

(i) sub-critical flow (when the water depth hB is imposed)

ũB= ũI+2
g(
hI−
hB), 6̃B= 6̃I (21a)

(ii) sub-critical flow (when the velocity ũB is imposed)

hB=
� 1

2
g
(ũI− ũB)+
hI

�2

, 6̃B= 6̃I (21b)

(iii) supercritical inflow (the variables (hB, ũB, 6̃B) are given); and
(iv) supercritical outflow

hB=hI, ũB= ũI, 6̃B= 6̃I (21c)

In Equation (21), subscript B denotes the boundary value, subscript I denotes the inner
Riemann state value at the boundary, ũ and 6̃ are the depth-averaged velocity components
normal and tangential to the boundary respectively.

4.4. Time integration

A second-order Adams–Bashforth time stepping numerical solver is employed to integrate the
SWEs in time. At time t=nDt, where Dt is the time step, Equation (9) may be written as
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in which the superscript n refers to the time level. Then, the Adams–Bashforth method is
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The time step was selected by trial and error. This is because the allowable time step for
stability is not only affected by a Courant criterion based on cell size and local flow speed
(often the smallest cell size being critical). It is also affected by stability of the Adams–Bash-
forth method and the time taken for numerical waves resulting from the evolution of
discontinuities from independent Riemann problems to interact. The time step was fixed a
priori, and then left unchanged throughout computations. It was chosen so that it did not
violate any of the foregoing stability constraints, and so a possible disadvantage of fixed time
step adaptive Q-tree grid methods is that the allowable time step may become very small.
Furthermore, the Q-tree scheme presented here was not utilized at optimum efficiency,
whereby different time steps could be used at different grid resolution levels.

4.5. Interpolation

The generation of Q-tree grids can produce adjacent panels of different sizes so that a hanging
node is created at the interface between two cells. This requires values to be known at grid
locations where the information is not stored. Thus, complicated interpolation procedures are
required to approximate the values for all the different grid configurations encountered.
Various techniques have been proposed to overcome this inherent disadvantage of Q-tree grids
(e.g. References [21,22]). From such approaches, it is clear that a compromise is needed
between sufficient accuracy of interpolation and the complexity of the technique implemented.
In this paper, linear interpolation has been used as it provides sufficient accuracy, and is
efficient to implement.

5. RESULTS

5.1. Wind-induced circulation in a circular basin

This test problem consists of a uniform wind stress applied to the surface of shallow water in
a circular basin. The basin has a non-uniform bed profile, with still water depths that become
progressively deeper towards its centre. Figure 3 shows the bathymetry of the basin with the
still water depth contours given by

hs=
1

1.3
�1

2
+
'�1

2
−

1
2

rb

R0

��
(24)
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Figure 3. Circular basin: bathymetry (still water depth contours in m).

where rb is the distance from the centre of the basin and R0 is the radius of the basin which
is equal to 193.2 m (in the case considered here). In shallow water with non-uniformly varying
bathymetry, the depth-averaged velocities in deeper water can be directed against the direction
of the wind, whereas in shallower water, the velocities are more likely to be in the same
direction as the applied wind stress. Kranenburg [23] developed an analytical solution for this
problem assuming the centre of the gyres lay on the centreline of the basin and predicted flow
against the wind direction in the centre of the basin.

Initially, the water is at rest. A uniform wind stress from southwest to northeast is then
applied, being increased from 0 to 0.02 N m−2 over a period of 1000 s to avoid numerical
seiching, according to

tw=
�

−2
� t

Tr

�3

+3
� t

Tr

�2�
tss, t5Tr (25a)

tw=tss, t]Tr (25b)

where t is time, Tr is the length of time required to build up the flow and tss is the steady state
value of the wind stress. In this case, Tr is set to 1000 s and tss is set to 0.02 N m−2. The
bottom friction and Coriolis parameter are set to 0, and slip conditions are applied at the
boundary. A constant depth-averaged eddy viscosity of 0.00012 m2 s−1 is used throughout the
basin. A time step Dt=0.3 s is used to ensure stability, which is below the value implied by
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a Courant condition. The test was run for 10000 s. To check for grid convergence, results were
obtained on uniform level 6 and level 7 Q-tree grids. It was observed that the depth-averaged
velocity vectors were very similar, except immediately adjacent to the boundaries where the
effects of the staircase approximation were evident. Figure 4 depicts the steady state depth-
averaged velocity vectors in the basin obtained using the level 7 grid, but with one in three
vectors plotted for ease of visual representation. Two counter-rotating gyres can be discerned
with the flow across the deepest part of the basin directed against the direction of the wind.
The centres of the gyres lie slightly downwind of the north–south centreline of the basin, in
agreement with the results of Cruz [22].

Figure 5 shows a typical non-uniform Q-tree grid used for the present computation, where
the smallest cells are of sub-division level 8 corresponding to Dx=2.5 m. The centre of the
domain has cells with a minimum level of 6. Figures 6 and 7 show the depth-averaged velocity
vectors and streamfunction contours at steady state, which confirm the position of the gyres
within the basin. The flow pattern is diametrically symmetric with respect to the wind
direction. The centres of the gyres lie in almost exactly the same locations as for the uniform
level 7 grid discussed previously. The streamlines resemble Kranenburg’s [23] results. Further
comparison between the models was achieved by plotting the normalized depth-averaged
velocity

Figure 4. Circular basin: steady state wind-induced velocities on uniform level 7 Q-tree grid.
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Figure 5. Circular basin: non-uniform Q-tree grid.

(u+6)


2

k

u� ln Z

perpendicular to the wind direction across the centre of the basin. Note that k=0.4 is the von
Kármán constant, u� is the shear velocity at the free surface (u�=
tw/r, where tw=

twx

2 +twy
2 ) and Z=H/z0, where the weighted mean water depth H=1/1.3 m and z0 is bed

roughness height. Here, z0=2.8 mm, corresponding to laminar flow over a hydraulically
smooth bed, with the viscosity as given above. A comparison between the simulated profile
and Kranenburg’s theoretical prediction is given in Figure 8. There is reasonable agreement in
the general behaviour of the normalized depth-averaged velocity, although the numerical
results do not exhibit a kink at the centre of the basin and are otherwise more oscillatory than
the analytical profile. The former discrepancy arises from the smoothing effect of discretizing
the bed elevations near the middle of the basin. The latter oscillation may be due to the present
solution attempting to rectify the central discrepancy. Further reasons why there may be slight
differences between the results are the approximation of a rigid lid and assumed gyre locations
in Kranenburg’s model. It should also be noted that care is needed to model the curved
boundaries, since in coarse grids significant amounts of spurious vorticity may be shed from
the staircase representation. The root mean-square error (r.m.s.e.) was estimated for this case
by examining the difference between the simulated and analytical velocity values along the
centreline. For the present scheme, which is second-order accurate in space, the r.m.s.e. was
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Figure 6. Circular basin: steady state wind-induced velocities on non-uniform Q-tree grid.

0.032. By setting the limiter F equal to zero, the scheme was rendered first-order accurate and
the r.m.s.e. was found to increase to 0.134. Taken overall, this test validates the use of the new
formulation given in Equation (4) in solving the SWEs using Roe’s approximate Riemann
solver on non-uniform bathymetries.

The computations were undertaken on a Digital Pentium 200 MHz Computer with 128 Mb
RAM. Taking the results of the non-uniform Q-tree grid as an example case, it took 6 h CPU
time and utilized 200000 variables in double precision for the simulation to reach t=10000 s,
corresponding to the steady state results depicted in Figures 6–8.

5.2. Rectangular dam-break

A square box of plan dimensions 200×200 m with a horizontal bed is divided by an
infinitesimally thin impermeable wall into two equal compartments each measuring 200×100
m. The initial still water depths are 10 and 5 m either side of the dividing wall. At time t=0,
the dividing wall is instantaneously opened a distance of 75 m, as depicted in Figure 9. A bore
then moves downstream as water discharges from the higher to the lower level. Meanwhile, a
depression wave moves in the opposite direction. The dam-break problem provides a very
difficult test for numerical schemes due to the discontinuous initial condition, yet is widely
reported in the literature [3,19,20,24].

The initial Q-tree grid was created by normalizing the 200×200 m square box, so that it
fitted exactly into the unit (root) square, and then sub-dividing uniformly to level 5 to form a
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Figure 7. Circular basin: depth-averaged streamlines on non-uniform Q-tree grid.

Figure 8. Circular basin: normalized depth-averaged velocity profiles.
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Figure 9. Rectangular dam-break: definition sketch.

6.25 m spaced square grid. The time step Dt was 0.1 s. The bed friction coefficient, Coriolis
parameter and eddy viscosity coefficient were all set to zero throughout the computation.

During the time stepping procedure, the Q-tree grid adapted according to criteria based on
the magnitude of the free surface gradient

U=
'�(z
(x
�2

+
�(z
(y
�2

(26)

Grid enrichment is undertaken whereby cells of resolution level less than 7 are sub-divided if
U\0.1. Grid coarsening takes place by removal of all four cells, within a given parent cell, if
their resolution level is greater than 5 and the combined value of UB0.02. It should be noted
that resolution levels 7 and 5 are user-defined notional maximum and minimum sub-division
levels, respectively.

Figure 10(a)–(c) illustrates the adaptive Q-tree grids after 2, 4 and 7.2 s for mesh enrichment
and coarsening. The corresponding water depth contours are presented in Figure 11. The grid
evolution approximately matches the water depths indicating that the adaptation criteria are
working properly. The final set of results is in almost exact agreement with other solutions
presented in the literature (e.g. Reference [3]). Two vortices have formed immediately down-
stream and to the sides of the breach opening.

Figure 12 shows the ratio of cell numbers between uniform grid and adaptive grids (with and
without grid coarsening). It is clear that adaptive Q-tree grids lead to significant efficiency
gains with regard to array storage.

5.3. Circular dam-break

Another popular validation test examines the evolution of a cylindrical dam-break [3,19,25,26].
Initially, water is retained at a depth of 10 m in a cylinder of radius 11 m. The cylinder is
infinitesimally thin walled, and located at the centre of a square flat-bottomed tank of side 100
m. Again, the initial condition is discontinuous in that the cylindrical wall is removed
instantaneously at t=0. The time step is 0.01 s.
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Figure 10. Rectangular dam-break: adapted Q-tree grids at t=2 s (a), 4 s (b) and 7.2 s (c).
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Figure 11. Rectangular dam-break: water depth contours at t=2 s (a), 4 s (b) and 7.2 s (c).

Figure 13 illustrates the initial grid configuration, whereby the finest grid panels are set to
level 10 with sides of 0.09765625 m. To improve computational efficiency, the maximum grid
resolution level is reset to 9 at t=0.03 s, 8 at t=0.06 s and 7 at t=0.09 s after dam-break.
For grid adaptation, the magnitude of free surface gradient (defined above) is again utilized.
For cells where U\0.5, grid enrichment is undertaken by further sub-division provided the
resolution level is less than 7. Removal of cells to coarsen the grid is implemented when four
cells within a parent cell have combined value of UB0.4, and their resolution level is greater
than 5.
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Figure 12. Rectangular dam-break: Q-tree grid cell number ratio against time.

Figure 13. Circular dam-break: initial Q-tree grid.
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Figure 14. Circular dam-break: adapted Q-tree grids at t=0.2 s (a) and 0.69 s (b).
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Figure 15. Circular dam-break: water depth contours at t=0.2 s (a) and 0.69 s (b).
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Figures 14 and 15 show the adaptive Q-tree grids and associated plan water depth
contours at times t=0.2 and 0.69 s. The close relationship between the adaptive grid and
evolving free surface can be observed. The final set of water level contours is in excellent
agreement with the predictions made by Mingham and Causon [26]. As can also be seen in
the radial profile in Figure 16, the water depth falls from a central peak of 9.5 m to a
circular plateau of approximately 3.0 m, which ends at the moving front of the bore.

Figure 17 presents the total number of grid cells in the adaptive Q-tree grid (with and
without coarsening) as the flow evolves. Note that a uniform grid at level 7 would contain
16384 cells. The beginning stages of both adaptive Q-tree grids are similar in that they
drop from a total of 4195 cells initially to 1660 cells at 0.09 s. The total number of grid
cells for combined grid enrichment and coarsening is the value of 2464 cells by 0.69 s. For
grid enrichment only, the numbers of grid cells continue to increase slightly, reaching 2788
cells by 0.69 s. It is again evident that adaptation has led to substantial savings in array
size.

Figure 16. Circular dam-break: depth profile along a radial.

Figure 17. Circular dam-break: number of Q-tree grid cells against time.
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Figure 18. Oblique hydraulic jump: definition sketch.

Figure 19. Oblique hydraulic jump: initial Q-tree grid.

5.4. Oblique hydraulic jump

When a supercritical flow is deflected by a converging wall (at an angle u), the resulting
shockwave forms an oblique hydraulic jump at an angle b0, as depicted in Figure 18. This test
case was considered by Anastasiou and Chan [3], Alcrudo and Garcia-Navarro [19], and Zhao
et al. [20]. Here, the oblique hydraulic jump is computed for a channel where u=8.95°. The
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Figure 20. Oblique hydraulic jump: final adapted Q-tree grid.

initial Q-tree grid shown in Figure 19 contains 2049 cells. At the inflow boundary, the
upstream water depth and the inflow velocity are 1 m and 8.57 m s−1 respectively. Since the
resulting inflow Froude number is 2.737, the supercritical inflow condition is applied as a
boundary condition. The time step was set as Dt=0.01 s. For grid adaptation, the magnitude
of free surface gradient (defined above) is again utilized. For cells where U\0.1, grid
enrichment is undertaken by further sub-division provided the resolution level is less than 7.
Removal of cells to coarsen the grid is implemented when four cells within a parent cell have
a combined value of UB0.08, and their resolution level is greater than 5. Figure 20 shows the
final 2745-cell adapted Q-tree grid obtained using the foregoing criterion. The normalized
difference in water depth from one time level to the next was used to check convergence to
steady state. In fact, convergence was neither very fast nor perfectly steady. By 6000 time steps
(i.e. t=60 s), the normalized difference remained slightly oscillatory, with an amplitude equal
to 0.01 approximately.

Figures 21 and 22 give contours of water depth computed without and with grid adaptation
respectively. The contour plots demonstrate that the hydraulic jump is sharply captured by the
adaptive grid, and has an angle b0�30°. In both cases, the average water depth behind the
shock front is 1.53 m and the corresponding velocity is 7.90 m s−1. Hence, the resultant
downstream Froude number is 2.04. The exact analytical solution (using the theory by Hager
et al. [27]) is downstream water depth=1.49984 m, downstream velocity=7.95308 m s−1,
downstream Froude number=2.0737 and angle b0=30°. Figure 23 depicts the free surface as
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Figure 21. Oblique hydraulic jump: water depth contours (non-adapted grid).

Figure 22. Oblique hydraulic jump: water depth contours (adapted grid).
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Figure 23. Oblique hydraulic jump: three-dimensional view of water surface at steady state.

a three-dimensional plot. It is obvious that the oblique jump is well defined away from the
wall, but that the steady state water surface contains spikes at the convergent wall due to the
lack of boundary fitting of the Q-tree grid. This boundary effect is also noticeable in the
contour plots.

5.5. Jet-forced flow in a circular basin

Jet-forced flow in a shallow circular basin with a flat bed is essentially equivalent to
two-dimensional viscous flow within a circle (a benchmark case that has been investigated
semi-analytically by Dennis [28] and Mills [29], and also numerically, e.g. [3,30]). This test
problem is useful because the geometry is complicated and unsuitable for either Cartesian or
polar grids because the flow domain is bounded by straight-walled inlet and outlet stems
connected to the curved-walled basin. The inlet into the reservoir is sharp-edged, and
separation occurs giving rise to recirculation zones either side of a through-flow stream; the
detailed flow pattern being dependent on the inlet Reynolds number. Figure 24 illustrates the
initial Q-tree grid with 1940 cells. Here, the radius of the circular basin is R0=0.75 m, and the
centrelines of the inlet and outlet stems are located exactly p radians apart around the basin
circumference. The openings into, and out of, the basin each subtend 2o=p/15 rad. At the
beginning of the inflow stem, the inlet velocity, UI, is set to 0.1 m s−1. At the outlet of the
outflow stem, the water depth is set at 0.1 m. The bed friction coefficient is set to zero. The
inlet Reynolds number is defined as

ReI=
UIoR0

n
(27)
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Figure 24. Jet-forced flow in a circular basin: initial Q-tree grid.

where n is the kinematic eddy viscosity coefficient. Here, n is 7.84×10−4 m2 s−1, correspond-
ing to ReI=10. The time step is set as Dt=0.005 s.

During the time stepping procedure, the Q-tree grid is adapted according to criteria based
on the magnitude of the non-dimensionalized depth-averaged vorticity

V0=
R0

UI

)(6
(x

−
(u
(y
)

(28)

Grid enrichment is undertaken whereby cells of resolution level less than 8 are sub-divided if
V0\2.25. Grid coarsening takes place by removal of all four cells, within a given parent cell,
if their resolution level is greater than 6 and the maximum value of the four children is
V0B0.75. Figures 25 and 26 depict the adapted grid and steady state velocity vector field at
time t=45 s. As would be expected, the flow separates on entering the basin; there is a
bounded through-flow stream between the inlet and outlet stems, which bulges towards the
outlet before exiting as a radial sink-like flow. Symmetric vortices are produced in the fluid
regions either side of the through-flow, their centres displaced slightly towards the inlet side of
the basin. The upper vortex is anticlockwise, the lower clockwise rotating. The flow patterns
are almost identical to those produced by other numerical schemes for solving the shallow flow
equations (e.g. References [3,30]). The depth-averaged streamlines in Figure 27 are in close

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 247–280



SHALLOW WATER EQUATIONS 275

Figure 25. Jet-forced flow in a circular basin: final adapted Q-tree grid, ReI=10.

agreement with Dennis’ [28] two-dimensional results for viscous flow in a circular domain.
This test confirms the scheme’s ability to model recirculating flow within a geometrically
complicated domain.

6. CONCLUSIONS

A second-order accurate Godunov-type solver of the SWEs in finite volume form is described.
A new mathematical formulation is derived that accounts properly for spatially varying
bathymetry by balancing the flux gradient and source terms, and is suitable for Roe’s
approximate Riemann scheme without the need for a posteriori numerical techniques. The
model utilizes Q-tree grids, with adaptation criteria based on the magnitudes of free surface
gradient or depth-averaged vorticity. Results are presented for several validation tests, which
highlight certain features of the present shallow flow solver. The effect of non-uniform bed
conditions is examined by simulating wind-induced steady state circulation in a dish-shaped
circular basin. The flow pattern is in broad agreement with Kranenburg’s [23] model.
However, the centres of the gyres are slightly downwind of the locations assumed by
Kranenburg. Moving-front dam-break and shock-type hydraulic jump flows are also consid-
ered, and the grid adaptation found to lead to significant array storage savings while retaining
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Figure 26. Jet-forced flow in a circular basin: depth-averaged velocities, ReI=10.

Figure 27. Jet-forced flow in a circular basin: depth-averaged streamlines, ReI=10.

accuracy. Laminar jet-forced flow in a circular reservoir is computed, a case that involves a
relatively complicated geometry and tests advection and diffusion terms in the SWEs. The
steady state flow field contains counter-rotating recirculation regions either side of the jet flow
between inlet and outlet. Overall, the results are in close agreement with alternative semi-
analytical and numerical models given in the literature.
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APPENDIX A. NOMENCLATURE

a unx+6ny

A inviscid flux Jacobian matrix
c wave celerity

Coriolis parameterf
f, g flux vectors

vector of flux functions through Sf.
vector of inviscid fluxesfI

fV vector of viscous fluxes
gravitational accelerationg
total water depthh
still water depthhs

vector of forcing functionsh
weighted mean depthH
free surface wavelengthL
left eigenvector matrixL

nx

2 +ny
2n

Cartesian components of nnx, ny

unit normal vector to Sn
NA identification number of cell A

component of vector of conserved variables, qq
value of q at centre of cell AqA

vector of conserved variablesq
reconstructed right and left Riemann states at interface between cells i and jqi, j

+, qi, j
−

gradient ratior
distance from centre of circular basinrb

distance vector from cell centre to any arbitrary point within the cellr
radius of circular basinR0

right eigenvector matrixR
inlet Reynolds numberReI

boundary of problem domainS
bottom slope components in the x- and y-directions respectivelySox, Soy

t time
time required to build up the flowTr

shear velocity at free surfaceu�
depth-averaged velocity components in the x- and y-directions respectivelyu, 6
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ũ, 6̃ depth-averaged velocity components normal and tangential to boundary
UI inlet flow velocity
V cell area
x, y horizontal Cartesian co-ordinates in physical plane
z0 bed roughness height
Z normalized depth, Z=H/z0

Greek letters

b limiter parameter
b0 oblique hydraulic jump angle

half-angle defining basin inlet and outlet openingso

von Kármán constantk

l1, l2, l3 eigenvalues
diagonal matrix of the absolute values of the eigenvalues of A�L�
coefficient of kinematic eddy viscosityn

u angle of converging wall
density of waterr

magnitude of steady state surface shear stresstss

tw magnitude of free surface shear stress
free surface shear stress components in the x- and y-directions respectivelytwx, twy

tbx, tby bed shear stress components in the x- and y-directions respectively
free surface elevation above still water levelz

length of cell sideDs
time stepDt
square cell dimensionDx
slope limiterF
gradient vector9
free surface gradient adaptivity parameterU

V problem domain
vorticity adaptation parameterV0

cell boundary(C

Subscripts

outer Riemann state at boundaryB
E east
i, j cell number indices
I inner Riemann state at boundary
N north

southS
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derivatives in the x- and y-directions respectivelyx, y
W west

Superscripts

n time levels
inviscid and viscous components respectivelyI, V
right and left Riemann states either side of a cell interface+ , −
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